Why 5G standalone core needs to be on every operator’s roadmap

Why 5G standalone core needs to be on every operator’s roadmap

Why 5G standalone core needs to be on every operator’s roadmap

22nd of October 2020
By now we all know that 5G’s ultrafast speeds, high bandwidth, and low latency will open a world of opportunities, its advanced applications transforming virtually every industry. From manufacturing, healthcare, and the Internet of Things (IoT), to AR, VR, and gaming, the possibilities are endless. Service providers have two ways of transitioning to a next-gen network: 5G NSA (non-standalone) and 5G SA (standalone), with SA being the end-goal. 5G NSA (4G LTE EPC plus new RAN) remains the strategy to quickly launch high-speed 5G broadband, yet lacks the new architecture and functionality that will allow 5G to fulfill its visionary use cases.

Unlike 5G NSA, which reuses the Evolved Packet Core (EPC), 5G SA uses cloud-based and Service-Based Architecture (SBA) that optimize network infrastructure with virtualized network functions (NFs), enabling operators to launch differentiated services, ensuring a high quality of service.

5G NSA: step one in 5G launch

The most popular choice of service providers to deploy 5G is 5G NSA, which is 5G radio using an existing 4G EPC. This option is considered the most viable and cost-effective. The only condition is that the 4G EPC needs to be 3GPP Release 15-complaint with additional functionalities to support dual-radio connectivity. This will enable operators to seamlessly launch 5G services and offer high-speed internet and improve access capacity.

5G NSA focuses on offering higher data speeds and improved radio coverage in densely populated areas, helping CSPs rapidly market 5G to gain a competitive edge. However, it does not offer many of the advanced use cases possible with 5G SA, such as ultra-reliable and low latency communications (URLLC) and massive machine-type communications (mMTC).

5G-SA: the path to full 5G benefits

The 3rd Generation Partnership Project (3GPP) has revamped core network architecture, having moved away from traditional telecom protocols to more open, modern SBA. The 5G Core comprises multiple NFs, each responsible for specific core network functions. These NFs use REST-based APIs to interface with each other over HTTP/2 protocol, which is collectively referred to as the Service-Based Interface (SBI).

5G SA key components

5G SA key features and components

With the sheer number of use cases it supports and the forecast for devices, traffic is far more dynamic in a 5G network. And so a robust underlying core network is necessary for the network to swiftly respond to demands. 5G SA enables just that. Some of its key features:

Multi-vendor ecosystem opens the doors for new vendors, who are not just restricted to the telecom sector, or in the legacy core. The adoption of new technologies that are in-line with modern infrastructure such as REST-based (HTTP/2 or Open APIs) widens the scope for innovative vendors to contribute and revolutionize network operations and processes.

Service-Based Architecture defines key 5GC components as NFs that integrate with each over modern APIs that support multiple varied core network functions.

Control and User Plane Separation (CUPS) enables independent scaling between the control plane and user plane functions, facilitating flexible network deployment and operation. For instance, if the data traffic load increases, more data plane nodes are added without affecting the functionality of the existing control plane.

Network function virtualization (NFV) allows virtualizing entire network functions and appliances using standard vendor-neutral hardware and IT infrastructure in the 5G network. It helps operators achieve a faster service life cycle, rapid deployment, scalability, operational efficiency, agility, and more.

Network slicing enables operators to build multiple dedicated networks to cater to different business verticals with diverse requirements of high-bandwidth, ultra-reliability, low-latency communication, and more.

Multi-Access Edge Computing (MEC) distributes computing resources along the communication path using decentralized cloud infrastructure. MEC brings data and computational capabilities closer to the source and network edges such as users’ devices, IoT devices, vCPEs, and more.

Some key components include:

Unified Data Management (UDM) enables managing all subscription-related data for authorization and access services.

Unified Data Repository (UDR) stores all structured data on a flexible and highly available platform, enabling the network to readily respond to critical demands in real-time.

Policy Control Function (PCF) is evolved from the PCRF of legacy networks, providing policy assets to handle access mobility related to policies, as well as handling data- and application-related policies. It enables advanced plan and policy customization for 5G use cases.

Network Repository Function (NRF) keeps a record of all network function instances in the network and helps automate the functioning of NFs.

Network Slice Selection Function (NSSF) plays an essential role in network slicing, dynamically selecting slices based on real-time information.

Network Exposure Function (NEF) ensures information is securely translated and communicated from external applications. It is fundamental in the authorization for any access request received outside of the 3GPP network, thus ensuring the network supports use cases like cellular IoT, edge computing, and more.

Business benefits you can derive with a robust 5G SA solution

A 5G SA solution is meant to enable service providers to adapt to key technological changes like a cloud-native and microservice-based architecture, helping achieve operational excellence while maximizing ROI. It can facilitate:

  • Rapid introduction of new services without interfering with existing services
  • Scaling to support changing network demands and growing subscriber bases
  • Offering differentiated services with high QoS
  • Automating functions like network slicing
  • Lowering operational costs

Alepo’s role in your 5G journey

Alepo offers core network solutions and a digital business support system (BSS) to support unified 4G management (EPC, IMS), C-IoT, and non-3GPP networks (such as WiFi).

Alepo’s 5G Core solution includes AUSF, subscriber data management (SDM), UDM, UDR, EIR, PCF, and Charging Function (CHF). It also includes a unified and highly scalable subscriber repository that holds identities and subscription profiles for both 4G and 5G. The 5G Core employs cloud- and PaaS-agnostic microservice-based software architecture and supports public, private, and hybrid deployment options. And it supports both containerized and NFV-based deployment.

Alepo also supports operators who are not yet ready to move to 5G, bridging the gap by creating a modern next-gen omnichannel experience for subscribers by adding WiFi offload into the operator’s network as well as enabling unique and advanced IoT offerings on the legacy network.

Tell us your business needs, and we’ll help design network innovations to drive ROI. Connect with an Alepo expert today.

Rajesh Mhapankar

Rajesh Mhapankar

Director, Innovations

A seasoned professional, technologist, innovator, and telecom expert. With over 20 years of experience in the software industry, Rajesh brings a strong track record of accelerating product innovations and development at Alepo. He supports the company’s mission-critical BSS/OSS projects in LTE, WiFi and broadband networks, including core policy, charging, and control elements.

Subscribe to the Alepo Newsletter

5G SA vs 5G NSA: What Are The Differences?

5G SA vs 5G NSA: What Are The Differences?

5G SA vs 5G NSA: What Are The Differences?

October 19, 2020

Introduction

For leading mobile network operators (MNOs), 5G is mainly about offering high-speed connectivity to consumers, on devices that support fifth-gen network services. To smoothly transition from the existing legacy core to 5G, MNOs have two pathways: Non-Standalone (NSA) or Standalone (SA) architecture. And while they are both means to the same end, NSA and SA are structurally and functionally different.

NSA allows operators to leverage their existing network investments in communications and mobile core instead of deploying a new core for 5G. 5G Radio Access Network (RAN) can be deployed and supported by the existing Evolved Packet Core (EPC), lowering CAPEX and OPEX. To further lower network operating costs, operators can adopt the virtualization of Control and User Plane Separation (CUPS) along with software-defined networking (SDN). These initial steps will help quickly unlock new 5G revenue streams and offer faster data speeds.

5G SA is a completely new core architecture defined by 3GPP that introduces major changes such as a Service-Based Architecture (SBA) and functional separation of various network functions. Its architecture has the definite advantage of end-to-end high-speed and service assurance, particularly useful for MNOs who are set to commence new enterprise 5G services such as smart cities, smart factories, or other vertically integrated market solutions. The deployment model enables the rapid introduction of new services with quick time-to-market. However, it means additional investment and complexities of running multiple cores in the network.

Architecturally, NSA includes a new RAN, deployed alongside the 4G or LTE radio with the existing 4G Core or EPC. 5G SA, on the other hand, includes a new radio along with the 5G Core (5GC), comprising completely virtualized cloud-native architecture (CNA) that introduces new ways to develop, deploy, and manage services. 5GC supports high-throughput for accelerated performance than the 5G network demands. Its virtualized service-based architecture (SBA) makes it possible to deploy all 5G software network functions using edge computing.

5G software network functions using edge computingAn overview of 5G SA and 5G NSA deployment options (Source: GSMA) 

5G Standalone (SA) vs 5G Non-Standalone (NSA)

5G SA Architecture

According to a survey, 37% of MNOs will deploy 5G SA within two years; 27% of operators plan to deploy 5G SA within 12 to 18 months with an additional 10% increase within 24 months. 5G SA architecture will allow operators to address the fifth generation of mobile communications, including enhanced mobile broadband, massive machine-to-machine communications, massive IoT, and ultra-low latency communications.

Standalone 5G NR comprises a new end-to-end architecture that uses mm-Waves and sub-GHz frequencies and this mode will not make use of the existing 4G LTE infrastructure. The SA 5G NR will use enhanced mobile broadband (eMBB), Ultra-Reliable and Low Latency Communications (URLLC), and huge machine-type communications (mMTC) to implement multi-gigabit data rates with improved efficiency and lower costs.

5G SA also enables more advanced network slicing capabilities, helping operators rapidly transition to both 5G New Radio (NR) and 5G as the core network. Network slicing, URLLC, and mMTC bring ultra-low latency along with a wide range of next-gen use cases like remote control of critical infrastructure, self-driving vehicles, advanced healthcare, and more. However, the NR advanced cases are not backward compatible with the EPC, which is the framework that provides converged voice and data on a 4G LTE network. The level of reliability and latency that 5G provides will be indispensable for handling smart-grid control machines, industrial automation, robotics, and drone control and coordination.

5G NSA Architecture

NSA 5G NR is considered as the early version of SA 5G NR mode, in which 5G networks are supported by existing LTE infrastructure. It fundamentally concentrates on eMBB, where 5G-supported handsets and devices will make use of mmWave frequencies for increased data capacity but will continue to use existing 4G infrastructure for voice communications.

NSA helps MNOs launch 5G quickly for eMBB to get a competitive edge in the telecom market. NSA also helps leverage its existing LTE/VoLTE footprint to maximize the LTE installed base and boost capacity while increasing delivery efficiency. It will not support network slicing, URLLC, and mMTC, but its higher broadband speeds will enable services such as video streaming, augmented reality (AR), virtual reality (VR), and an immersive media experience.

Non-Standalone 5G NR will provide increased data-bandwidth by using the following two new radio frequency ranges:

  • Frequency range 1 (450 MHz to 6000 MHz) – overlaps with 4G LTE frequencies and is termed as sub-6 GHz. The bands are numbered from 1 to 255.
  • Frequency range 2 (24 GHz to 52 GHz) – is the main mmWave frequency band. The bands are numbered from 257 to 511.

Technical Differences between 5G SA and 5G NSA

The main difference between NSA and SA is that NSA provides control signaling of 5G to the 4G base station, whereas in SA the 5G base station is directly connected to the 5G core network and the control signaling does not depend on the 4G network. In simple terms, NSA is like adding a solid-state drive to an old computer, which can improve the system’s performance, while SA is like replacing it with a new computer that has newer technologies and optimum performance.

Some benefits include:

  • NSA is extremely low in cost compared to SA.
  • NSA eases 5G network deployments as it reuses existing 4G facilities, thus allowing rapid time to market for 5G mobile broadband.
  • With NSA, the deployment is faster and time-to-market is lower, as 4G locations can be used to install 5G radio. SA requires building 5G base stations and the back-end 5G core network to fully realize the characteristics and functions of 5G.
  • SA involves a 5G core with SBA for scalability and flexibility to deliver a superfast network with ultra-low latency for advanced 5G use cases.

5G Usage Scenarios in NSA and SA Operation

The requirements of 5G NR for the SA provide a complete set of specifications for the 5G core network that goes beyond NSA. The three major usage scenarios defined for 5G by the 3GPP and GSMA include:

  1. Enhanced mobile broadband (eMBB)
  2. Ultra-reliable and low latency communications (URLLC)
  3. Massive machine-type communications (mMTC)

Enhanced Mobile Broadband with 5G Major 5G usage scenarios

The Future of 5G Includes NSA and SA

Early adopters of 5G primarily focus on NSA deployments as they compete to deliver 5G speeds with a quick time to market. These MNOs can move to SA-based architecture over a period of time, which most plan to do. NSA deployment remains a mainstream solution given its ability to handle both 4G- and 5G-based traffic, keeping these early adopters ahead of their competition as they undertake their network transformation. 5G devices are not widespread so the need for SA-based architecture is still nascent.

In the future, the convergence of NSA and SA will help operators move to a full 5G network. A complete virtualized 5G architecture will allow MNOs to migrate and choose varied functionalities of their existing NSA solution to the 5GC platform, as new 5G services are launched, allowing them to monetize their investment gradually rather than move all at once and enabling them to recover their costs over time.

Although SA is a more mature network architecture compared to NSA, NSA will continue to be the more commonly chosen path to 5G. All NSA single-mode 5G phones launched this year or early next year will be valid for a decade, and as SA architecture permeates, more and more 5G SA devices will be in our homes and businesses.

Rajesh Mhapankar

Rajesh Mhapankar

Director, Innovations

A seasoned professional, technologist, innovator, and telecom expert. With over 20 years of experience in the software industry, Rajesh brings a strong track record of accelerating product innovations and development at Alepo. He supports the company’s mission-critical BSS/OSS projects in LTE, WiFi and broadband networks, including core policy, charging, and control elements.

Subscribe to the Alepo Newsletter

Role of AAA in 5G and the IoT Ecosystem

Role of AAA in 5G and the IoT Ecosystem

Role of AAA in 5G and the IoT Ecosystem

 

24th of June 2020

Evolution of the Mobile Network

According to a report from the GSMA, the number of fifth-generation (5G) users worldwide is expected to reach 1.4 billion by 2025, which is 15 percent of the global total. 5G means a significant upgrade from the last generation of mobile networks. With its higher bandwidth, low-latency, and virtualization capabilities, it has unleashed a massive IoT ecosystem, and this is expected to rapidly boost the number of devices and users on the data network, making proper IT planning imperative. As the mobile network evolves, the AAA will play a key role in acting as a bridge between devices and networks, ensuring operators are able to maximize ROI on their 5G investment.

AAA Evolution

AAA is an important service and policy control framework, enabling CSPs to control how their subscribers access and consume data services over WiFi, FTTx, 5G, and other IP-based broadband networks. It touches a number of areas within the core network and back office, from security and provisioning to billing and, most significantly, customer experience.

Over a decade ago, the core functions of AAA were in line with dialup and, later on, DSL internet networks. Today, the ever-increasing need for improving customer experience, along with rapid growth in subscriber numbers and data usage, has placed new demands on AAA functionalities.

Diameter – the next-gen industry-standard protocol used to exchange authentication, authorization, and accounting information in LTE and IP Multimedia Systems (IMS) networks – provides a generic framework for exchanging AAA messages and defines a standard set of AAA request-and-response commands and attributes. Having evolved from RADIUS, it provides more reliable, secure, and flexible transport mechanisms for mobile data networks. It is used by LTE and IMS network functions, including the Policy and Charging Rules Function (PCRF), Home Subscriber Server (HSS), and Online Charging System (OCS) elements.

In modern networks where CSPs deliver services across multiple access networks such as fixed-mobile convergence (WiFi and mobile), the broadband network requires seamless user experience while accessing services. Within broadband networks, CSPs may have multiple types of network elements acting as service delivery points and policy enforcement points. In wireless networks such as 5G, the technology goal is to expand service capabilities in various industries using high-speed mobile broadband, Internet of Things (IoT), and virtualization by embracing key technologies like RESTful APIs. This ensures optimum performance, stateless and secured network functions (NFs), and a high level of quality of service (QoS) in the 5G Service Based Architecture (SBA).

The 5G SBA’s modular framework comprises components such as AuSF (Authentication Server Function), NEF (Network Exposure Function), NRF (NF Repository Function), PCF (Policy Control Function), NSSF (Network Slice Selection Function), and UDM (Unified Data Management), allowing deployment of diverse network services and applications. A robust AAA (like Alepo’s) facilitates seamless authentication for 5G network services, including authenticating and authorizing device access:

  • To enterprise slices by integrating with an enterprise AAA server
  • From non-3GPP networks such as WiFi and broadband

Top Ways AAA Can Help Telcos

Secure Access Control

The AAA server manages user profiles, holds access credentials, device identifiers, access policies, and so on. This helps enable various access control mechanisms such as barring access for blacklisted devices, allowing limited or walled-garden access. AAA helps implement corporate access control, allowing specific devices to offer connectivity to corporate network resources.

Revenue via Service Differentiation

AAA helps manage access profiles, data caps, time limits, and more, helping launch different bandwidth plans and implement data caps that are integral to driving revenue in broadband networks. Real-time usage monitoring helps control revenue leaks.

M2M/IoT Connectivity Management

Serving an important role in managing device connectivity for M2M or IoT networks, AAA holds device-specific network parameters that allow access to a specific enterprise network. It collects usage or event details from the network and helps identify device cell location and device online status, handles usage alerts, and pushes CDRs to the billing system to charge network usage.

Enhance Customer Experience

AAA helps push changes in service parameters and policies to different subscribers without disconnecting or resetting their connections. Operators can offer better customer experience through seamless session updates whenever a customer:

  • Purchases a turbo boost bandwidth speed
  • Surpasses their fair usage policies
  • Refills balance for a prepaid account

Monitor Usage and Notifications

While monitoring usage and notifications, AAA supports enforcement of fair usage policies on reaching the defined time- and volume-based cap. It also helps standardize customer experience based on usage levels.

Monetize WiFi Access

AAA assists businesses to unlock a new revenue stream using the WiFi hotspot business model. The AAA server helps:

  • Access time- and data-based passes
  • Enable location-based services and offers
  • Allow dynamic redirection to customized captive portals

Role of AAA in 5G-IoT Ecosystem

Authenticating Slice Access

5G and network slicing are often concurrently used, though network slicing is an architectural component that helps operators design and customize different slices that run on a common physical interface. Network slicing supports a multitude of use cases and new services through 5G and also establishes multi-vendor and multi-tenant network models using shared infrastructure. According to ABI Research, network slicing creates approximately US $66 billion additional value for telecom companies.

When a device requests connectivity for a specific slice, besides 5G network authentication, the enterprise or tenant may also want to authenticate the device. This is handled by AAA, which holds the profiles of devices that can connect to the enterprise slice.

5G Slice Authenication

Authorizing Data Connectivity

As a device attempts to connect an enterprise data network, such as a mobile device that accesses streaming services, or a drone camera trying to upload images to the data center, the enterprise or tenant may want to check the device requesting connectivity and restrict access to the network resource to certain devices. AAA authenticates the device, checks whether it is authorized to access the resource, and then provides the connection parameters such as IP address and QoS for data connectivity.

5G Slice Authenication

Multi-Service Access

Enterprise AAA plays a key role in connecting and authenticating devices to an enterprise network (slice), authorizing connectivity from non-LTE/5G networks such as WiFi and broadband. When the device tries to connect to 5G networks from non-LTE/5G networks such as WiFi, broadband, AAA plays an important role in authenticating the device, authorizing connectivity to the 5G core network function to allow seamless connectivity for mobile devices from non-5G networks.

5G Slice Authenication

Popular 5G-IoT Use Cases

Smart City

5G rollout will not only deliver high-speed connectivity globally but will facilitate the ability to handle massive network connections and unlock new life-enhancing services. Smart cities will integrate devices over 5G networks to build an intelligent city with smart traffic, smart homes, parking, waste management, public safety, and smart utility facilities. Coupled with enterprise IoT, AI, AR, and VR, 5G will offer maximum potential for service innovations in building smart cities, including use cases (slices) such as healthcare, drone, education, energy, and more. Additionally, use cases like connected vehicles, high streaming voice, and video transmission from crime sites, air pollution monitoring, and surgeries using AR and VR will further enhance lives.

Entertainment and Gaming

In both the entertainment and gaming fields, IoT solutions have played a major role in helping track emerging trends and consumer tastes in entertainment and giving users highly immersive gaming experiences. IoT caters to the entertainment industry’s three major needs: strong knowledge of the latest trends and user preferences, creating immersive content, and targeted ad campaigns. Today, users enjoy a whole new level of user-engaging visual content and gaming procedures with features such as:

  • Visible texts in the screenplay of video games
  • High-level 3D and reporting models
  • Content productions via AR and VR approach

Smart Home and Smart Building

IoT, combined with 5G-enabled tools and technologies, brings more control and efficiency to intelligent buildings and at home. These tools help control the connected home, comprising appliances, lighting, entertainment, safety, security, HVAC, temperature, energy management, and more from smart devices like smartphones, tablets, or laptops over the WiFi network. Smart home solutions leverage connected and automated homes by enabling users to centrally manage all devices from one location and provide device-specific instructions at just one click. IoT-enabled or smart buildings with AI-driven analytics help restructure key aspects of commercial buildings: construction, habitation, and maintenance enhancing the quality of life of occupants and staff. Building automation 2.0 covers smart building solutions covering space management, asset management, cleanliness and hygiene management, and environmental monitoring.

Smart Manufacturing

5G gives manufacturers and telecom operators the greatest opportunity to collaborate and build smart manufacturing units. By truly exploiting automation, artificial intelligence, and industrial IoT (IIoT), manufacturers can change the game of their business and discover innovative ways to adopt industry 4.0 practices. 5G RAN, network slicing, cloud infrastructure, and real-time data collection through AI build a strong vision of fully connected and automated factories. Having broader access to greater amounts of data, this use case revolutionizes the production capabilities of the manufacturing units by enabling manufacturers to generate meaningful data, which can be further used to enhance digitalization, create new revenue streams, identify operational obstacles, optimize industrial processes, and save manufacturing costs. Smart manufacturing has the maximum scope to transform businesses with complex device communications and stringent, costly, time-consuming manual processes.

Steps To Create A Winning Deployment

Virtualization

Virtualization plays an important role in any product deployment as it helps automate product delivery by using the latest NFV technologies. It helps enhance performance as it monitors network resources and can scale and heal automatically. Virtualizing the core network can also bring the benefit of network slicing and customized use cases such as smart cities, autonomous vehicles, entertainment, gaming, and remote healthcare. This helps build networks that boost performance, capacity, latency, security, reliability, and coverage of the application developed.

Open Standards

Standardization like 3GPP and REST APIs are the foundation on which different products and services are developed. They bridge the gap between work processes and deliverables to ensure performance and interoperability across the mobile supply chain. This helps eliminate vendor lock-in as it is always possible to get another vendor to deploy a solution that meets industry standards.

AAA Transformation

AAA Transformation helps CSPs streamline processes and reduce all of their ownership costs. With support for all access technologies, it equips them with a single platform to deliver AAA needs across broadband, mobile, WiFi, and M2M/IoT segments. Operators can boost performance and security by integrating multivendor legacy AAA deployments into a centralized cloud environment.

Digital BSS

A digital BSS stack helps CSPs deliver digital-first customer experience and automate business processes in both 5G and IoT deployments by upgrading their legacy BSS with a new 5G-ready stack. A modular BSS delivers a complete digital transformation that helps greenfield operators with full-stack deployment and replaces legacy systems that operate in a phased approach.

Conclusion

A high-performance and robust AAA Server integrated with 5G and IoT networks can be used for multiple use cases across various industrial sectors. It helps provide cost-saving network optimizations for end-to-end business processes. Advanced virtualized AAA solutions, combined with system integrations and data migration solutions, will deploy market-leading and cost-efficient services without affecting the current system or customer experience.

Rajesh Mhapankar

Rajesh Mhapankar

Director, Innovations

A seasoned professional, technologist, innovator, and telecom expert. With over 20 years of experience in the software industry, Rajesh brings a strong track record of accelerating product innovations and development at Alepo. He supports the company’s mission-critical BSS/OSS projects in LTE, WiFi and broadband networks, including core policy, charging, and control elements.

Subscribe to the Alepo Newsletter