Top five telecom trends to expect in 2021

Top five telecom trends to expect in 2021

Top five telecom trends to expect in 2021

 

28th of December 2020

 

 

2020 has been transformative for businesses around the world; years of digitalization happened within months and service providers were the backbone of this change. The pandemic has also compelled CSPs to rethink their operations and fasttrack their own digital transformation – a phase that has only just begun and will accelerate in 2021.

Operators will reinvent and focus more on customer-centric offerings to meet evolving demands with the work from anywhere culture and to be ready for new lockdowns on notice. AI, machine learning, and automation will facilitate telcos to modernize their network and help create personalized and contextual services. 5G has become a reality and new IoT applications and private 5G will come to fruition.

The increasing reliance on cloud services, digital communication, and digital payments, in addition to increasing network demand, also means added cybersecurity concerns for networks as well as their subscribers. 2020 saw significant hacks, and operators will continue to put in place more enhanced security measures to safeguard their own networks and their customers.

The top 5 trends to watch

5G proliferation

Luckily the pandemic didn’t slow 5G investment, with new network rollouts accelerating. 2020 saw devices like the iPhone12 and lower-priced 5G devices hitting the market, and the adoption is expected to be widespread in 2021. 5G operators will need to turn their attention towards providing a customer experience that’s as modern and advanced as the services it will accompany, as well as solutions for private 5G to facilitate the fourth industrial revolution.

Deloitte forecasts that private 5G deployment over the next five years will largely comprise three types of industries for which private 5G is the most natural choice, delivering unmatched security, low latency, high speed, network slicing for specific resource allocation, cost-efficiency, and flexibility that technologies such as 4G and LTE cannot. The first movers, they predict, will be ports, airports, and other logistics hubs, considering the nature of their operations that require controlling a vast network of equipment to manage heavy loads and tracking each consignment in real-time. Next, the forecast says, will be factories and warehouses looking to replace their existing combination of wired as well as wireless technologies with wireless private 5G networks that can handle high volumes of large and small devices, including everything from a screwdriver to massive industrial equipment. The third section of the market, the forecast says, will include greenfield deployments, especially in smart buildings and campuses, but also temporary sites such as music festivals.

And private 5G holds massive potential for service providers: an Analysys Mason report cites that of all existing and ongoing private 5G deployments, operators hold merely 16%, implying there is much scope for growth. While many large enterprises are considering deploying their own private 5G networks, operators have a competitive edge. Operator-licensed spectrum is currently the only deployment option available for private networks in many countries and is least likely to face interference. This, coupled with their expertise in building network infrastructure and managing operations, makes partnering with operators a reliable and cost-effective route to private 5G.

Internet of Behavior (IoB)

5G has ushered in a new generation of devices connected to the Internet of Things (IoT). The use of IoT devices will be even more widespread as 5G networks become more prevalent globally. We also know that this means that there will be more devices per person, and more devices mean more valuable customer data, for what can be called the Internet of Behaviors (IoB).

IoB means companies will take advantage of their access to increasingly sophisticated data and insights into customer behavior through technologies like big data, location tracking, and facial recognition. Gathering and analyzing this behavioral data helps boost CX by offering increasingly personalized and contextual services – over different channels depending on individual preferences. In addition to gauging demand, these detailed behavior insights will also enable operators to accelerate identifying and tackling service-related and other issues their customers may be facing.

The nature of data that is gathered and used will depend on local privacy laws and regulations in different countries, though often the responsibility will be on individual companies to define the comfort zone for what level of data gathering is acceptable for their customers, in other words, using the data to offer enough value-addition to customers to improve their relationship with the business, without overstepping moral bounds.

Cloud services

The digital shift of working from anywhere is compelling more telcos to invest in IT systems and infrastructure that can support the high volumes of data their networks are processing. Cloud computing is being embraced by telcos more and more as its benefits become known. Operating in the cloud reduces physical infrastructural requirements, lowers operational costs, and helps streamline processes. Further, it enables operators to leverage the full potential of their customer data, making it more easily accessible across the organization.

Among the different cloud computing scenarios, more telcos are likely to favor distributed cloud in 2021. Here, public cloud providers distribute cloud services to various physical locations. Telcos can choose locations close to them to enable low latency and lower costs while operating on the public cloud without having to invest in private cloud infrastructure.

And while telcos will increasingly invest in cloud computing, data volumes are continuing to increase by the minute; Gartner has estimated that by 2023, 43 billion IoT-enabled devices will be in use. Cloud computing falls short in offering enough latency to handle these growing data volumes and the advanced use cases that 5G supports. Telcos can supplement their capacity and support IoT infrastructure by implementing edge computing systems that will pre-process data that it gathers from its sources of origin.

Cybersecurity

The increasing dependence on digital connectivity has also meant that telcos need to account for added security threats to their networks as well as to customer devices, taking additional measures to secure customer data. Forbes reports that the pandemic has resulted in attacks on banks increasing 238 percent, and those on cloud servers increasing by 600 percent, and this is only between January and April 2020.

Telcos must account for the fact that more customers, individuals as well as enterprise clients, are working remotely, and need a security structure in place that safeguards them. This means that cybersecurity strategies, similar to those earlier provided to enterprises, will now be extended to home networks and on mobile devices.

Operators will increasingly employ sophisticated tools such as AI and machine learning techniques to filter out security threats, implement additional firewalls, use cloud and other services with more enhanced in-built security measures, and more.

Confidential computing is another important trend that we are likely to see in 2021, helping operators in ramping up data privacy, encrypting all computing, and adding layers of security around the sensitive customer as well as network data.

Digital payments

Contactless payments were already pervasive pre-pandemic and have since taken even greater strides, enabling secure payments while maintaining hygiene precautions in keeping with global social distancing norms. Forty-six percent of respondents in a global consumer study said they had opted for contactless payment options instead of their cards, and 82 percent view it as a cleaner way to make payments. In another survey conducted by Fiserv on payment methods people considered safest in preventing COVID-19 spread, 42 percent of respondents chose tap-and-pay credit cards and 24 percent chose mobile payments, with only six percent opting for cash. In fact, a report published by global consultancy A.T. Kearney says that we may have the first cashless society in just five years, running only on the card and digital payments.

2021 will mean service providers will introduce more advanced digital payment offerings. These technologies will help improve security through real-time detection and prevention of frauds and security breaches, provide instant round-the-clock-support to prevent payment delays and resolve disputes, automate processes for swift and seamless transactions, and utilize invaluable BI data and advanced analytics to create a more personalized customer experience. AI will also help in evaluating loan eligibility, putting in place rewards systems, optimizing sales and inventory management, and more.

Bring on 2021

2020 has arguably been one of the most mentally and physically challenging years in recent human history – a year that most of us want to move on from. And 2021 brings all the exciting opportunities we’ve been hoping for, especially with technology growing by leaps and bounds.

At Alepo, we’re proud to be building software in these transformative times to help businesses overcome their challenges. We’re thrilled at the prospect of partnering in your success, whether you’re planning to introduce any of our forecasted trends for the year, overhaul your network, introduce new services, or launch a new network. Reach out today to see how we can help you in your network’s journey to success.

Reach out today to see how we can help you in your network’s journey to success.

Gayatri Sarang

Gayatri Sarang

Lead Content and Engagement Specialist – Marketing

Gayatri is part of the content and communications brigade at Alepo. Having locked focus on the telecom domain in recent years, she has vast and diverse experience in writing for leading publications. She moonlights as a volunteer urban wildlife rehabber and is a passionate baker.

Subscribe to the Alepo Newsletter

Top six ways AI and CX automation revolutionize telcos

Top six ways AI and CX automation revolutionize telcos

Top six ways AI and CX automation revolutionize telcos

14th of December 2020

The evolution of CX

It’s no secret that customer experience (CX) is emerging as the key differentiator for service providers: a Gartner study reports that over two-thirds of marketers say their companies compete primarily on CX. And two modern technologies are facilitating richer and more advanced CX than ever before: artificial intelligence (AI) and automation.

AI is used to mimic human intelligence in responding to situations and conversations. Automation, on the other hand, enables repetitive tasks to run with limited to no human intervention through preset programming. AI and automation, along with customer insights, enhance a telco’s capability to deliver an intelligent customer experience. This powerful combination also revolutionizes the way telcos interact with customers, facilitating them to monitor, track, and manage the customer experience 24x7x365. Artificial intelligence helps operators analyze complex customer behavioral patterns and offer contextual services, plans, and content, whereas automation accelerates these personalized offerings.

Customer care processes have drastically eased with the help of modern, automated, AI-based omnichannel self-care, enabling instant query redressal anytime, anywhere, and on a host of convenient platforms. NLP-based bots and emotional AI can even gauge customer emotions and moods in real-time, enabling personalized support that mimics human responses.

How AI and CX automation transform a telco’s offerings

1. Automated support

A telco’s support and self-care offerings are a major factor in influencing CX. Customers today are less inclined to contact call centers or visit physical stores for support. Instead, they prefer having more control over their accounts to resolve their own issues – using the platform and language of their choice. More telcos are turning to AI technology to improve customer engagement by automating self-care and support offerings. In fact, Servion predicts that, by 2025, AI will power 95% of all customer interactions.

AI chatbots are available for a host of platforms, including web and mobile apps, voice assistants such as Alexa and Cortana, and social platforms like WhatsApp, Skype, Facebook, Twitter, and more. Having steadily gained popularity, they offer a direct and instant link between customers and the operator. Available round-the-clock, they help customers bypass long wait times to speak with CSRs and avoid lines at physical stores. AI chatbots mimic the experience of interacting with a human agent, understanding the customer’s sentiments and responding accordingly.

Chatbots also offer many benefits to service providers. They reduce burden on support staff at stores and in call centers. All interactions are recorded for operator analysis to improve future offerings. And using machine learning, the bots continue to become “smarter” at responding to customer queries, further reducing resolution times and improving CX. Moreover, AI assistants are also good at cross-selling products.

2. Personalized recommendations

AI helps target the right subscriber or group of subscribers at the right time using an in-depth analysis of customers’ past actions, preferences, and needs, which are collected in the form of data and algorithms. It is a powerful tool that encompasses a variety of statistical techniques to evaluate customers’ future actions, making it easier for telcos to showcase products and services that exactly match customers’ requirements in real-time. Operators capture buying preferences and complete historical data, which is then processed using advanced analytical tools to create targeted contextual offers.

AI empowers marketers to design custom campaigns and promotions based on customer preferences and behavior instead of applying a one-size-fits-all strategy. The predictions equip service providers to be future-ready to monetize offerings and respond efficiently to changing market dynamics, helping them not only offer relevant products to the customer but also to manage the supply chain more efficiently as they modify their offerings. This helps boost customer satisfaction and reduce churn while increasing ARPU, facilitating cross-selling and upselling, and more.

3. Omnichannel experience

A digital-first approach that empowers customers with more than just support through multiple channels, an omnichannel experience consolidates all customer interactions and history on a single converged platform. Using AI as part of a cohesive engagement strategy enables a seamless CX, empowering customers to engage with the service provider no matter what device or platform they use. It enables operators to enhance support offerings, reduce resolution times, and improve CX. AI can be integrated with support to offer insights on customer interactions across channels – insights that CSRs can be granted access to, helping reduce response and resolution times, lessen the burden on CSRs, and boost CX.

4. Automated digital onboarding

Customers today increasingly prefer signing up for new services online rather than visiting a store, even more so considering pandemic-related social distancing norms prevalent in many countries. From order to delivery, the entire process of purchasing a new connection can be automated, assuring customers of a quick, easy, and paperless process using the web, mobile, or any other digital channel of their choosing. Digital onboarding solutions help capture key customer information, documents, biometrics, and more, verifying this information in real-time using for secure onboarding.

5. Delightful innovations

Customers expect a constantly advancing service provider who keeps up with technologies to make their life easier. With the widespread adoption of tools like chatbots and voice assistants, it’s only natural for telcos to keep pace and delight their customers with new and useful technologies driven by AI and automation. One such advancement is voice and speech recognition technology, which has meant that customers can clear their bills using voice-activated payments. The process is automated, and PCI-compliant systems assure the cardholder that their payment data is protected. Operators can offer secure round-the-clock services for customers who prefer to call and speak rather than pay online.

6. Instant satisfaction

Automation streamlines the purchase cycle for customers, easing buying decisions and payments to accelerate turnaround. Fully automated background processes use mature workflows or Robotic Process Automation (RPA) to enable instant service and, by reducing human intervention, eliminate the possibility of manual error. This enables operators to deliver the instantaneous support and service that customers demand today.

Alepo’s role in boosting CX

At the forefront of digitization, Alepo provides an industry-leading Digital Business Support System (BSS) integrated with AI-powered modules and automated processes. The BSS suite includes Omnichannel Self-Care with NLP-based AI chatbots, advanced BI reports and analytics, workflow automation in all modules such as interconnect and wholesale billingdistributor managemententerprise management, and much more.

Pankaj Garg

Pankaj Garg

Associate Director, Product Management

Pankaj Garg is a telecom and FinTech expert with over 15 years of experience in the software industry. Handling digital BSS offerings is among the many hats he wears at Alepo. Always up to speed with the newest advancements in the products he handles, he takes it slow only when he’s road-tripping across India to discover new places.

Subscribe to the Alepo Newsletter

Why 5G standalone core needs to be on every operator’s roadmap

Why 5G standalone core needs to be on every operator’s roadmap

Why 5G standalone core needs to be on every operator’s roadmap

22nd of October 2020

By now we all know that 5G’s ultrafast speeds, high bandwidth, and low latency will open a world of opportunities, its advanced applications transforming virtually every industry. From manufacturing, healthcare, and the Internet of Things (IoT), to AR, VR, and gaming, the possibilities are endless. Service providers have two ways of transitioning to a next-gen network: 5G NSA (non-standalone) and 5G SA (standalone), with SA being the end-goal. 5G NSA (4G LTE EPC plus new RAN) remains the strategy to quickly launch high-speed 5G broadband, yet lacks the new architecture and functionality that will allow 5G to fulfill its visionary use cases.

Unlike 5G NSA, which reuses the Evolved Packet Core (EPC), 5G SA uses cloud-based and Service-Based Architecture (SBA) that optimize network infrastructure with virtualized network functions (NFs), enabling operators to launch differentiated services, ensuring a high quality of service.

5G NSA: step one in 5G launch

The most popular choice of service providers to deploy 5G is 5G NSA, which is 5G radio using an existing 4G EPC. This option is considered the most viable and cost-effective. The only condition is that the 4G EPC needs to be 3GPP Release 15-complaint with additional functionalities to support dual-radio connectivity. This will enable operators to seamlessly launch 5G services and offer high-speed internet and improve access capacity.

5G NSA focuses on offering higher data speeds and improved radio coverage in densely populated areas, helping CSPs rapidly market 5G to gain a competitive edge. However, it does not offer many of the advanced use cases possible with 5G SA, such as ultra-reliable and low latency communications (URLLC) and massive machine-type communications (mMTC).

 5G-SA: the path to full 5G benefits

The 3rd Generation Partnership Project (3GPP) has revamped core network architecture, having moved away from traditional telecom protocols to more open, modern SBA. The 5G Core comprises multiple NFs, each responsible for specific core network functions. These NFs use REST-based APIs to interface with each other over HTTP/2 protocol, which is collectively referred to as the Service-Based Interface (SBI).

5G SA key components 5G SA key features and components

With the sheer number of use cases it supports and the forecast for devices, traffic is far more dynamic in a 5G network. And so a robust underlying core network is necessary for the network to swiftly respond to demands. 5G SA enables just that. Some of its key features:

Multi-vendor ecosystem opens the doors for new vendors, who are not just restricted to the telecom sector, or in the legacy core. The adoption of new technologies that are in-line with modern infrastructure such as REST-based (HTTP/2 or Open APIs) widens the scope for innovative vendors to contribute and revolutionize network operations and processes.

Service-Based Architecture defines key 5GC components as NFs that integrate with each over modern APIs that support multiple varied core network functions.

Control and User Plane Separation (CUPS) enables independent scaling between the control plane and user plane functions, facilitating flexible network deployment and operation. For instance, if the data traffic load increases, more data plane nodes are added without affecting the functionality of the existing control plane.

Network function virtualization (NFV) allows virtualizing entire network functions and appliances using standard vendor-neutral hardware and IT infrastructure in the 5G network. It helps operators achieve a faster service life cycle, rapid deployment, scalability, operational efficiency, agility, and more.

Network slicing enables operators to build multiple dedicated networks to cater to different business verticals with diverse requirements of high-bandwidth, ultra-reliability, low-latency communication, and more.

Multi-Access Edge Computing (MEC) distributes computing resources along the communication path using decentralized cloud infrastructure. MEC brings data and computational capabilities closer to the source and network edges such as users’ devices, IoT devices, vCPEs, and more.

Some key components include:

Unified Data Management (UDM) enables managing all subscription-related data for authorization and access services.

Unified Data Repository (UDR) stores all structured data on a flexible and highly available platform, enabling the network to readily respond to critical demands in real-time.

Policy Control Function (PCF) is evolved from the PCRF of legacy networks, providing policy assets to handle access mobility related to policies, as well as handling data- and application-related policies. It enables advanced plan and policy customization for 5G use cases.

Network Repository Function (NRF) keeps a record of all network function instances in the network and helps automate the functioning of NFs.

Network Slice Selection Function (NSSF) plays an essential role in network slicing, dynamically selecting slices based on real-time information.

Network Exposure Function (NEF) ensures information is securely translated and communicated from external applications. It is fundamental in the authorization for any access request received outside of the 3GPP network, thus ensuring the network supports use cases like cellular IoT, edge computing, and more.

Business benefits you can derive with a robust 5G SA solution

A 5G SA solution is meant to enable service providers to adapt to key technological changes like a cloud-native and microservice-based architecture, helping achieve operational excellence while maximizing ROI. It can facilitate:

  • Rapid introduction of new services without interfering with existing services
  • Scaling to support changing network demands and growing subscriber bases
  • Offering differentiated services with high QoS
  • Automating functions like network slicing
  • Lowering operational costs

Alepo’s role in your 5G journey

Alepo offers core network solutions and a digital business support system (BSS) to support unified 4G management (EPC, IMS), C-IoT, and non-3GPP networks (such as WiFi).

Alepo’s 5G Core solution includes AUSF, subscriber data management (SDM), UDM, UDR, EIR, PCF, and Charging Function (CHF). It also includes a unified and highly scalable subscriber repository that holds identities and subscription profiles for both 4G and 5G. The 5G Core employs cloud- and PaaS-agnostic microservice-based software architecture and supports public, private, and hybrid deployment options. And it supports both containerized and NFV-based deployment.

Alepo also supports operators who are not yet ready to move to 5G, bridging the gap by creating a modern next-gen omnichannel experience for subscribers by adding WiFi offload into the operator’s network as well as enabling unique and advanced IoT offerings on the legacy network.

Tell us your business needs, and we’ll help design network innovations to drive ROI. Connect with an Alepo expert today.

Rajesh Mhapankar

Rajesh Mhapankar

Director, Innovations

A seasoned professional, technologist, innovator, and telecom expert. With over 20 years of experience in the software industry, Rajesh brings a strong track record of accelerating product innovations and development at Alepo. He supports the company’s mission-critical BSS/OSS projects in LTE, WiFi and broadband networks, including core policy, charging, and control elements.

Subscribe to the Alepo Newsletter

5G SA vs 5G NSA: What Are The Differences?

5G SA vs 5G NSA: What Are The Differences?

5G SA vs 5G NSA: What Are The Differences?

 

19th of October 2020

Introduction

For leading mobile network operators (MNOs), 5G is mainly about offering high-speed connectivity to consumers, on devices that support fifth-gen network services. To smoothly transition from the existing legacy core to 5G, MNOs have two pathways: Non-Standalone (NSA) or Standalone (SA) architecture. And while they are both means to the same end, NSA and SA are structurally and functionally different.

NSA allows operators to leverage their existing network investments in communications and mobile core instead of deploying a new core for 5G. 5G Radio Access Network (RAN) can be deployed and supported by the existing Evolved Packet Core (EPC), lowering CAPEX and OPEX. To further lower network operating costs, operators can adopt the virtualization of Control and User Plane Separation (CUPS) along with software-defined networking (SDN). These initial steps will help quickly unlock new 5G revenue streams and offer faster data speeds.

5G SA is a completely new core architecture defined by 3GPP that introduces major changes such as a Service-Based Architecture (SBA) and functional separation of various network functions. Its architecture has the definite advantage of end-to-end high-speed and service assurance, particularly useful for MNOs who are set to commence new enterprise 5G services such as smart cities, smart factories, or other vertically integrated market solutions. The deployment model enables the rapid introduction of new services with quick time-to-market. However, it means additional investment and complexities of running multiple cores in the network.

Architecturally, NSA includes a new RAN, deployed alongside the 4G or LTE radio with the existing 4G Core or EPC. 5G SA, on the other hand, includes a new radio along with the 5G Core (5GC), comprising completely virtualized cloud-native architecture (CNA) that introduces new ways to develop, deploy, and manage services. 5GC supports high-throughput for accelerated performance than the 5G network demands. Its virtualized service-based architecture (SBA) makes it possible to deploy all 5G software network functions using edge computing.

5G software network functions using edge computingAn overview of 5G SA and 5G NSA deployment options (Source: GSMA) 

5G Standalone (SA) vs 5G Non-Standalone (NSA)

5G SA Architecture

According to a survey, 37% of MNOs will deploy 5G SA within two years; 27% of operators plan to deploy 5G SA within 12 to 18 months with an additional 10% increase within 24 months. 5G SA architecture will allow operators to address the fifth generation of mobile communications, including enhanced mobile broadband, massive machine-to-machine communications, massive IoT, and ultra-low latency communications.

Standalone 5G NR comprises a new end-to-end architecture that uses mm-Waves and sub-GHz frequencies and this mode will not make use of the existing 4G LTE infrastructure. The SA 5G NR will use enhanced mobile broadband (eMBB), Ultra-Reliable and Low Latency Communications (URLLC), and huge machine-type communications (mMTC) to implement multi-gigabit data rates with improved efficiency and lower costs.

5G SA also enables more advanced network slicing capabilities, helping operators rapidly transition to both 5G New Radio (NR) and 5G as the core network. Network slicing, URLLC, and mMTC bring ultra-low latency along with a wide range of next-gen use cases like remote control of critical infrastructure, self-driving vehicles, advanced healthcare, and more. However, the NR advanced cases are not backward compatible with the EPC, which is the framework that provides converged voice and data on a 4G LTE network. The level of reliability and latency that 5G provides will be indispensable for handling smart-grid control machines, industrial automation, robotics, and drone control and coordination.

5G NSA Architecture

NSA 5G NR is considered as the early version of SA 5G NR mode, in which 5G networks are supported by existing LTE infrastructure. It fundamentally concentrates on eMBB, where 5G-supported handsets and devices will make use of mmWave frequencies for increased data capacity but will continue to use existing 4G infrastructure for voice communications.

NSA helps MNOs launch 5G quickly for eMBB to get a competitive edge in the telecom market. NSA also helps leverage its existing LTE/VoLTE footprint to maximize the LTE installed base and boost capacity while increasing delivery efficiency. It will not support network slicing, URLLC, and mMTC, but its higher broadband speeds will enable services such as video streaming, augmented reality (AR), virtual reality (VR), and an immersive media experience.

Non-Standalone 5G NR will provide increased data-bandwidth by using the following two new radio frequency ranges:

  • Frequency range 1 (450 MHz to 6000 MHz) – overlaps with 4G LTE frequencies and is termed as sub-6 GHz. The bands are numbered from 1 to 255.
  • Frequency range 2 (24 GHz to 52 GHz) – is the main mmWave frequency band. The bands are numbered from 257 to 511.

Technical Differences between 5G SA and 5G NSA

The main difference between NSA and SA is that NSA provides control signaling of 5G to the 4G base station, whereas in SA the 5G base station is directly connected to the 5G core network and the control signaling does not depend on the 4G network. In simple terms, NSA is like adding a solid-state drive to an old computer, which can improve the system’s performance, while SA is like replacing it with a new computer that has newer technologies and optimum performance.

Some benefits include:

  • NSA is extremely low in cost compared to SA.
  • NSA eases 5G network deployments as it reuses existing 4G facilities, thus allowing rapid time to market for 5G mobile broadband.
  • With NSA, the deployment is faster and time-to-market is lower, as 4G locations can be used to install 5G radio. SA requires building 5G base stations and the back-end 5G core network to fully realize the characteristics and functions of 5G.
  • SA involves a 5G core with SBA for scalability and flexibility to deliver a superfast network with ultra-low latency for advanced 5G use cases.

5G Usage Scenarios in NSA and SA Operation

The requirements of 5G NR for the SA provide a complete set of specifications for the 5G core network that goes beyond NSA. The three major usage scenarios defined for 5G by the 3GPP and GSMA include:

  1. Enhanced mobile broadband (eMBB)
  2. Ultra-reliable and low latency communications (URLLC)
  3. Massive machine-type communications (mMTC)

Enhanced Mobile Broadband with 5G Major 5G usage scenarios

The Future of 5G Includes NSA and SA

Early adopters of 5G primarily focus on NSA deployments as they compete to deliver 5G speeds with a quick time to market. These MNOs can move to SA-based architecture over a period of time, which most plan to do. NSA deployment remains a mainstream solution given its ability to handle both 4G- and 5G-based traffic, keeping these early adopters ahead of their competition as they undertake their network transformation. 5G devices are not widespread so the need for SA-based architecture is still nascent.

In the future, the convergence of NSA and SA will help operators move to a full 5G network. A complete virtualized 5G architecture will allow MNOs to migrate and choose varied functionalities of their existing NSA solution to the 5GC platform, as new 5G services are launched, allowing them to monetize their investment gradually rather than move all at once and enabling them to recover their costs over time.

Although SA is a more mature network architecture compared to NSA, NSA will continue to be the more commonly chosen path to 5G. All NSA single-mode 5G phones launched this year or early next year will be valid for a decade, and as SA architecture permeates, more and more 5G SA devices will be in our homes and businesses.

Rajesh Mhapankar

Rajesh Mhapankar

Director, Innovations

A seasoned professional, technologist, innovator, and telecom expert. With over 20 years of experience in the software industry, Rajesh brings a strong track record of accelerating product innovations and development at Alepo. He supports the company’s mission-critical BSS/OSS projects in LTE, WiFi and broadband networks, including core policy, charging, and control elements.

Subscribe to the Alepo Newsletter

Network Functions Virtualization: Basics to Benefits

Network Functions Virtualization: Basics to Benefits

Network Functions Virtualization: Basics to Benefits

 

 

03rd of September 2020

 

 

 

 

With rising competition from operators and OTT players, the major differentiator for telecommunications service providers today is delivering disruptive and innovative services. To support these services, they need a more stable, reliable, and scalable network, such as one enabled by Network Function Virtualization (NFV). NFV has been an industry buzzword for some time now, so is it all that it’s cut out to be? From its benefits to its applications, we break it down for you to decide how to use it for your network.

Key Components of NFV

A modern network architecture technique, NFV virtualizes entire network functions using standard vendor-neutral hardware and IT infrastructure, facilitating improved communications services.
Key components of the NFV framework include:

Virtualized network functions (VNFs) are software implementations of various network functions that are deployed in network function virtualization infrastructure (NFVi), that were historically coupled with proprietary hardware appliances. VNFs run on virtual machines and are hosted on commercial off-the-shelf (COTS) computing devices, network hardware, and storage infrastructure. Common VNFs components include virtualized routers, DPI, firewalls, edge devices, signaling devices, load balancers, network address translation (NAT) services, WAN accelerators, and more. The primary hypervisors are OpenStack and VMware.

NFV infrastructure (NFVi) is the environment where VNFs run and comprises the hardware and software components from different vendors that are essential to successfully run the virtual network.

NFV management and orchestration (NFV-MANO) architectural framework is the key element of the European Telecommunications Standards Institute (ETSI) NFV architecture. It is a collection of all functional blocks, data repositories used by these blocks, and reference points and interfaces through which these functional blocks exchange information for the purpose of managing and orchestrating NFVi and VNFs. NFV-MANO includes the following components:

  • NFV Orchestrator (NFVO): a central component of an NFV-based solution that standardizes virtual network functions to improve the interoperability of software-defined network (SDN) elements. It orchestrates network resources for a broad range network services, enabling real-time automation, monitoring, and service assurance.
  • VNF Manager (VNFM): responsible for life cycle management, including deployment, monitoring, scaling, and removal of VNFs on a VIM.
  • Virtual Infrastructure Manager (VIM): responsible for managing, controlling, and monitoring virtual resources and their association with physical resources. It maintains the complete inventory of NFVi.

Together, these components replace traditional architecture to build a high-performing, reliable, and scalable network that delivers low-latency real-time applications while improving the operational efficiency of telecom services.

Top Six Benefits of NFV

NFV enables the swift creation of new services and facilitates rapid deployment in mobile and fixed networks. Its key benefits include:

Hardware flexibility and vendor independence

Legacy vendors offer their network functions on custom and dedicated hardware that is not easy to upgrade and demands a large investment of time and money. With NFV, network functions are virtualized and run on generic commercially available off-the-shelf (COTS) hardware, enabling service providers to share hardware across multiple network functions, giving them the advantage of software decoupling and building flexible virtual infrastructure that saves space, power, time, and costs. Operators can now mix and match vendors and functions for different features, software licensing costs, post-deployment support models, roadmaps, and more.

Faster service life cycle

Unlike physical hardware, VNFs can rapidly be created and removed on the fly. A VNF’s lifecycle is shorter and more dynamic since these functions are often added when needed and easily provisioned through automated software tools that do not require any onsite activity. In effect, NFV helps network operators commission or decommission services with the touch of a button without the need for physical shipping or delivery truck, dramatically reducing deployment time from weeks to minutes.

Rapid deployment of solutions

With the decoupling of software functionality and physical hardware, operators can deploy new solutions and put features into production rapidly, without requiring lengthy change requests or new appliances from legacy vendors. This expedited deployment process further facilitates NFV’s inherent support to use open source tools and software services.

Scalability and elasticity

Service providers always want to ensure they will be able to meet new requirements as well as scale up their capacity as their network grows. Doing so with traditional network equipment requires time, planning, and monetary investment. NFV eliminates these concerns as it enables capacity changes by offering a way to expand and reduce the resources used by VNFs. It enables scalability and automation, improves the flexibility of network service provisioning, and reduces the time needed to deploy new services. It efficiently ensures elasticity by offloading the VNF workload and spinning a new instance to implement the same network function and sharing the load with an existing VNF.

Lower energy consumption 

NFV helps reduce energy usage by exploiting the power management features of standard servers and storage, as well as workload consolidation and location optimization. For example, based on virtualization techniques, it is possible to focus the workload on a smaller number of servers during offpeak hours (such as nighttime) so that all other servers can be switched off or put on energy-saving mode.

Operational efficiency and agility

NFV is inherently automation-friendly and can maximize the benefits of using Machine to Machine (M2M) tools. For instance, a device management automation tool can be used to determine the need for more memory in a network function. NFV helps reduce downtime and also assists operators with various network maintenance activities. It helps temporarily reduce and free up existing VNFs for maintenance activities by spinning to a new VNF. This helps achieve In-Service-Software-Upgrade (ISSU), enables 24×7 self-healing networks, and minimizes operational loss of revenue due to network outages.

Leading NFV Applications

The benefits of NFV can be realized across a variety of network functions that can operate almost entirely in the cloud without the need for physical hardware. Some of its most popular applications include:

Virtual Evolved Packet Core (vEPC)

Virtualized EPC helps deliver superior quality of service (QoS) by dynamically scaling to meet the growing traffic. vEPC ensures lower OPEX and TCO while ensuring faster services to the market, consistent service availability, and improved network efficiency. Deployed in independent slices of the controllers, user planes, and management planes, vEPC is generally free of the architectural restrictions possessed by the traditional nodes-based EPC.

Multi-Access Edge Computing (MEC)

MEC is an alternative approach to the cloud environment. It brings data storage and computational capabilities closer to the data source, which is considered as an edge of the network. It enables computing resources to be distributed along the communication path by decentralizing the cloud infrastructure. The source of data or network edge can be the users’ devices, IoT device, router, or CSP’s server infrastructure, which helps reduce latency and save bandwidth. This minimizes long-distance communication between a client and server and most user actions are processed in real-time.

Virtual Customer Premises Equipment (vCPE)

vCPE, or cloud-CPE as it is also called, essentially transforms hardware-based operations like routing and security into virtual software-based operations, delivering them to the branch or edge networks. Traditionally, CPEs are task-specific with one device dedicated to performing one service. This includes VPNs, firewalls, routers, and more, all of which are hosted through a remote service provider or centralized management platform. It offers many benefits, including easier and swifter deployment, scalability, lower investment and operational cost, improved service flexibility, and scope for innovation.

Content Delivery Networks (CDNs)

Also known as a content distribution network, a CDN is a network of proxy servers and data centers, distributed across different locations to ensure high availability and performance. CDN operators enable the distribution of most content available on the Internet today, such as streaming media, web applications, downloadable content such as software, media files, documents, and occasionally security-related applications. While they earn revenue from content owners, CDN operators pay a hosting fee to ISPs and network operators.

Software-Defined Wide Area Network (SD-WAN)

According to research firm Gartner, over 90%of edge infrastructure refresh initiatives will comprise vCPE and SD-WAN devices by 2023. SD-WAN, as the name implies, employs software-defined means to manage a wide area network. It decouples the control mechanism from network hardware, facilitating simpler management, and more efficient operations. One of its primary applications is enabling the building of WANs with improved performance employing more economically viable commercial Internet access instead of high-cost private technologies.

Virtual AAA (vAAA)

Authentication, Authorization, Accounting (AAA) server can be deployed in an NFVi environment using ETSI-based standard integrations or customized instances provided by the NFVi vendor. Specific and generic VNFs manage the entire AAA lifecycle smoothly. A carrier-grade, high-performing, stateless, and cloud-native AAA (such as Alepo’s) integrates with the 5G core network to perform a host of functions such as slice authentication, authentication and authorization for DNN provisioning, authenticating access from non-3GPP networks, and more.

IP Multimedia Subsystem (IMS)

IMS enables the delivery of secure and reliable multimedia communications services (voice, video, text) over IP networks. Its 3GPP standards-based architectural framework provides a unified infrastructure to connect various devices and networks, standardizing the implementation and management of next-gen mobile networks. The IMS core includes Call Session Control Function (CSCF), Home Subscriber Server (HSS), Media Resource Functions (MRF), Signaling Gateway (SGW), and Media Gateway Control Function (MGCF), all of which together work together to act as the control layer.

Session Border Controllers (SBCs)

SBCs help control and secure IP communications sessions. While they were initially designed for VoIP networks, they are commonly also used for IP video, text messaging, and more for residential as well as enterprise applications. They facilitate communication between different parts of the network. Along with ensuring seamless connectivity, SBCs enable high quality of service, advanced security to protect against frauds and malicious attacks, statistics gathering, and more.

Network Monitoring

Network monitoring checks networking devices and components such as servers, firewalls, switches, routers, VMS, and more for faults and failures. When any discrepancy is noticed, an alert is triggered to notify the system administrators by email and/or SMS, enabling them to swiftly act to improve or rectify the problem. Part of network management, network monitoring optimizes performance, ensures high availability, and minimizes downtime.

Video Servers

Video servers help deliver video content using a host of devices. Broadly speaking, they are used in two key applications: security surveillance and broadcasting. In surveillance, a video server helps capture video using one or more analog and/or digital inputs, enables network connectivity for the analog components to digitize and stream the video over an IP network, and provides users to access it through a web browser or mobile app. In broadcasting, it offers a bidirectional platform to record video as well as ingest video from external sources, stores this video, and enables editing and transferring the final output to multiple video streams.

Service Delivery Platforms

A service delivery platform helps manage and control the entire delivery life cycle, from creation to execution. It provides the architecture for service providers to swiftly develop and launch convergent internet-based multimedia services such as IPTV, VoIP, mobile TV, multi-player video games, and more. Its telecommunications applications include value-added services (VAS), partner management, converged billing, and more. When used in the enterprise domain, it is especially useful as it lets operators run a dedicated platform for each enterprise, offering increased control to their customers. 

Security Accelerator Functions

Over the past decade, the technology protecting virtual and physical tools has considerably evolved, paving the way for virtualizing and, consequently, centralizing security. These network security functions include firewalls, spam protection systems, intrusion detection and prevention systems, virus scanners, and more. Virtual firewalls, for instance, are NFV solutions that protect virtual machines. As technology progresses, more and more of these security functions are expected to be virtualized.

Conclusion

Network Function Virtualization is imperative for operators looking to transform into digital service providers from mere traditional communications service providers. The next-gen NFV applications and use cases help them become successful in the digital era in the face of competition from innovative OTT applications. Plus, from the network operations perspective, virtualization employs an end-to-end service-based approach to replace traditional function-specific hardware, helping telcos achieve five-nines availability, lower CAPEX and OPEX, and ensure rapid time to market of new services. 

Keshav Pareek

Keshav Pareek

Solution Integrator

Keshav is a solution integrator working on DevOps tools and technology, with expertise in virtualization. Over the years, he’s helped facilitate tier-1 telcos to modernize their network functions using NFV-based deployment. Always keeping pace with the latest in the industry and often immersed in reading tech blogs, he spends his free time going on long bike rides in the countryside.

Subscribe to the Alepo Newsletter

Envisioning Private 5G Success with Compact Core

Envisioning Private 5G Success with Compact Core

Envisioning private 5G success with Compact Core

 

8th of July 2020

 

 

 

5G is set to change the way large and small enterprises operate; from universities, ports, smart cities, factories, farms, and buildings, its use cases can meet all business needs. And the key network component that will enable all the unique features of 5G for these enterprises: Compact Core.

The Compact Core is an industrialized solution designed for enterprises that need carrier-grade network connectivity with a limited resource footprint to deliver services to their users. It is especially useful for those who want private network connectivity, whether it is over LTE or 5G. The deployment involves pre-integrated access and core network components for quick setup and less complex operations.

How the Compact Core benefits an enterprise

The Compact Core is a complete pre-integrated and self-contained solution that includes the network core and other networking infrastructure, which seamlessly works with end devices and the radio access network. It does not impact and is not dependent on external systems or organizations.

Swift deployment

In terms of time, Compact Core deployment is highly efficient. Enterprises can launch a private LTE or 5G network along with mobile broadband and voice services in a single project, saving on the time they would otherwise need to deploy these services individually. Since the solution is pre-integrated, no extensive development, customization, or testing is needed to go live.

Cloud-native benefits

The Compact Core is a modernized software solution that leverages the power of cloud, abstracting the underlying complex functionality. It is the smartest choice when upgrading from legacy telco infrastructure to modern, web-scale, 5G architecture. Capable of serving multiple enterprises, it uses SaaS-based multi-tenant architecture. Each tenant has a dedicated configuration, user management, and can self-service through web portals. This setup offers automated, cost-efficient, and hassle-free operations with dynamic provisioning of core capacity based on individual business requirements.

Flexible footprint

Whether the enterprise wants to deploy securely on-premise or on the public cloud, the modern compact core solution has a small resource footprint and flexibility of deployment modes. An in-memory database and ability to scale up and down sets it apart from legacy telco core solutions.

Role of Alepo’s Compact Core in private 5G enablement

Alepo is a software company that offers Subscriber Data Management and policy network functions for the Compact Core. It manages subscriber identities, service subscriptions, and is responsible for authentication, authorizing secure access to network services. It also includes the web-based Enterprise Self-Service (ESS) Portal that enables enterprises to self-manage SIM cards, end-to-end subscription and device lifecycles, and real-time connection and usage monitoring. Alepo’s pre-integrated partners bring the RAN, end devices, and other infrastructure needed to flip the switch and turn on the 5G network.

Ready for real 5G launch

The Compact Core equips an enterprise to launch its private LTE or 5G services. Essential services include enhanced Mobile Broadband (eMBB), voice calls, and video calls. It can also include services such as push-to-talk or walkie-talkie. Further, users can get 5G benefits such as ultra-reliable and low-latency communication (URLLC) for M2M and IoT applications.

Most existing 5G networks are powered by 4G core/EPC and 5G RAN (non-standalone 5G). They are dependent on the 4G core and therefore are not end-to-end 5G networks. Alepo’s new-generation Compact Core, along with the ESS Portal, is 5G-compliant. All elements are pre-integrated to rapidly enable enterprises to set up a new standalone 5G network with zero dependence on the 4G core.

Nitish Muley

Nitish Muley

Senior Engineer

Nitish has spent years building mobile apps for technologies like VR, AR, IoT, and is currently working on Alepo’s newest products. Always up to speed with the latest in the industry, Nitish is a voracious reader – and fervent writer – about all things related to tech and wireless standards. After hours, he wears a traveler’s hat, pursuing his love for photography as he explores different countries.

Subscribe to the Alepo Newsletter