Top five telecom trends to expect in 2021

Top five telecom trends to expect in 2021

Top five telecom trends to expect in 2021

 

28th of December 2020

 

 

2020 has been transformative for businesses around the world; years of digitalization happened within months and service providers were the backbone of this change. The pandemic has also compelled CSPs to rethink their operations and fasttrack their own digital transformation – a phase that has only just begun and will accelerate in 2021.

Operators will reinvent and focus more on customer-centric offerings to meet evolving demands with the work from anywhere culture and to be ready for new lockdowns on notice. AI, machine learning, and automation will facilitate telcos to modernize their network and help create personalized and contextual services. 5G has become a reality and new IoT applications and private 5G will come to fruition.

The increasing reliance on cloud services, digital communication, and digital payments, in addition to increasing network demand, also means added cybersecurity concerns for networks as well as their subscribers. 2020 saw significant hacks, and operators will continue to put in place more enhanced security measures to safeguard their own networks and their customers.

The top 5 trends to watch

5G proliferation

Luckily the pandemic didn’t slow 5G investment, with new network rollouts accelerating. 2020 saw devices like the iPhone12 and lower-priced 5G devices hitting the market, and the adoption is expected to be widespread in 2021. 5G operators will need to turn their attention towards providing a customer experience that’s as modern and advanced as the services it will accompany, as well as solutions for private 5G to facilitate the fourth industrial revolution.

Deloitte forecasts that private 5G deployment over the next five years will largely comprise three types of industries for which private 5G is the most natural choice, delivering unmatched security, low latency, high speed, network slicing for specific resource allocation, cost-efficiency, and flexibility that technologies such as 4G and LTE cannot. The first movers, they predict, will be ports, airports, and other logistics hubs, considering the nature of their operations that require controlling a vast network of equipment to manage heavy loads and tracking each consignment in real-time. Next, the forecast says, will be factories and warehouses looking to replace their existing combination of wired as well as wireless technologies with wireless private 5G networks that can handle high volumes of large and small devices, including everything from a screwdriver to massive industrial equipment. The third section of the market, the forecast says, will include greenfield deployments, especially in smart buildings and campuses, but also temporary sites such as music festivals.

And private 5G holds massive potential for service providers: an Analysys Mason report cites that of all existing and ongoing private 5G deployments, operators hold merely 16%, implying there is much scope for growth. While many large enterprises are considering deploying their own private 5G networks, operators have a competitive edge. Operator-licensed spectrum is currently the only deployment option available for private networks in many countries and is least likely to face interference. This, coupled with their expertise in building network infrastructure and managing operations, makes partnering with operators a reliable and cost-effective route to private 5G.

Internet of Behavior (IoB)

5G has ushered in a new generation of devices connected to the Internet of Things (IoT). The use of IoT devices will be even more widespread as 5G networks become more prevalent globally. We also know that this means that there will be more devices per person, and more devices mean more valuable customer data, for what can be called the Internet of Behaviors (IoB).

IoB means companies will take advantage of their access to increasingly sophisticated data and insights into customer behavior through technologies like big data, location tracking, and facial recognition. Gathering and analyzing this behavioral data helps boost CX by offering increasingly personalized and contextual services – over different channels depending on individual preferences. In addition to gauging demand, these detailed behavior insights will also enable operators to accelerate identifying and tackling service-related and other issues their customers may be facing.

The nature of data that is gathered and used will depend on local privacy laws and regulations in different countries, though often the responsibility will be on individual companies to define the comfort zone for what level of data gathering is acceptable for their customers, in other words, using the data to offer enough value-addition to customers to improve their relationship with the business, without overstepping moral bounds.

Cloud services

The digital shift of working from anywhere is compelling more telcos to invest in IT systems and infrastructure that can support the high volumes of data their networks are processing. Cloud computing is being embraced by telcos more and more as its benefits become known. Operating in the cloud reduces physical infrastructural requirements, lowers operational costs, and helps streamline processes. Further, it enables operators to leverage the full potential of their customer data, making it more easily accessible across the organization.

Among the different cloud computing scenarios, more telcos are likely to favor distributed cloud in 2021. Here, public cloud providers distribute cloud services to various physical locations. Telcos can choose locations close to them to enable low latency and lower costs while operating on the public cloud without having to invest in private cloud infrastructure.

And while telcos will increasingly invest in cloud computing, data volumes are continuing to increase by the minute; Gartner has estimated that by 2023, 43 billion IoT-enabled devices will be in use. Cloud computing falls short in offering enough latency to handle these growing data volumes and the advanced use cases that 5G supports. Telcos can supplement their capacity and support IoT infrastructure by implementing edge computing systems that will pre-process data that it gathers from its sources of origin.

Cybersecurity

The increasing dependence on digital connectivity has also meant that telcos need to account for added security threats to their networks as well as to customer devices, taking additional measures to secure customer data. Forbes reports that the pandemic has resulted in attacks on banks increasing 238 percent, and those on cloud servers increasing by 600 percent, and this is only between January and April 2020.

Telcos must account for the fact that more customers, individuals as well as enterprise clients, are working remotely, and need a security structure in place that safeguards them. This means that cybersecurity strategies, similar to those earlier provided to enterprises, will now be extended to home networks and on mobile devices.

Operators will increasingly employ sophisticated tools such as AI and machine learning techniques to filter out security threats, implement additional firewalls, use cloud and other services with more enhanced in-built security measures, and more.

Confidential computing is another important trend that we are likely to see in 2021, helping operators in ramping up data privacy, encrypting all computing, and adding layers of security around the sensitive customer as well as network data.

Digital payments

Contactless payments were already pervasive pre-pandemic and have since taken even greater strides, enabling secure payments while maintaining hygiene precautions in keeping with global social distancing norms. Forty-six percent of respondents in a global consumer study said they had opted for contactless payment options instead of their cards, and 82 percent view it as a cleaner way to make payments. In another survey conducted by Fiserv on payment methods people considered safest in preventing COVID-19 spread, 42 percent of respondents chose tap-and-pay credit cards and 24 percent chose mobile payments, with only six percent opting for cash. In fact, a report published by global consultancy A.T. Kearney says that we may have the first cashless society in just five years, running only on the card and digital payments.

2021 will mean service providers will introduce more advanced digital payment offerings. These technologies will help improve security through real-time detection and prevention of frauds and security breaches, provide instant round-the-clock-support to prevent payment delays and resolve disputes, automate processes for swift and seamless transactions, and utilize invaluable BI data and advanced analytics to create a more personalized customer experience. AI will also help in evaluating loan eligibility, putting in place rewards systems, optimizing sales and inventory management, and more.

Bring on 2021

2020 has arguably been one of the most mentally and physically challenging years in recent human history – a year that most of us want to move on from. And 2021 brings all the exciting opportunities we’ve been hoping for, especially with technology growing by leaps and bounds.

At Alepo, we’re proud to be building software in these transformative times to help businesses overcome their challenges. We’re thrilled at the prospect of partnering in your success, whether you’re planning to introduce any of our forecasted trends for the year, overhaul your network, introduce new services, or launch a new network. Reach out today to see how we can help you in your network’s journey to success.

Reach out today to see how we can help you in your network’s journey to success.

Gayatri Sarang

Gayatri Sarang

Lead Content and Engagement Specialist – Marketing

Gayatri is part of the content and communications brigade at Alepo. Having locked focus on the telecom domain in recent years, she has vast and diverse experience in writing for leading publications. She moonlights as a volunteer urban wildlife rehabber and is a passionate baker.

Subscribe to the Alepo Newsletter

Costa Rica’s free public WiFi is overhauled with Alepo’s cloud monetization solution

Costa Rica’s free public WiFi is overhauled with Alepo’s cloud monetization solution

  • The consortium project led by PC Central is part of telecommunications regulator Sutel’s Zii WiFi initiative to help bridge the digital divide
  • The Zii WiFi site provides educational content, information on government procedures, access to entertainment material, and more
  • Users gain free internet access for four hours in exchange for filling in a survey
  • Alepo’s cloud WiFi SMP captures key user information and generates custom reports

Wednesday, November 11, 2020, SAN JOSE – Costa Rica’s PC Central has revamped their public WiFi offering using Alepo’s cloud WiFi Service Monetization Platform (SMP). Alepo’s platform enables the consortium, led by PC Central, to grant free internet access in exchange for completing a survey and uses an advanced reporting module to capture key user data.

PC Central and the consortium were assigned the contract for the deployment by the National Telecommunications Fund, Fonatel, as part of telecommunications regulator Sutel’s Zii WiFi initiative to provide connectivity to 515 digital zones, including parks, train stations, universities, and other public facilities. The initiative helps bridge the digital gap and provide internet access to urban as well as rural areas where broadband connectivity is low. As part of the initiative, the consortium deployed 70,000 meters of fiber optic cable, primarily in the cities of San José, Cartago, and Limón.

PC Central looked to Alepo after originally launching the WiFi network with another solution that could not meet the demands of the large user base and custom reports required by Sutel. Alepo was able to rapidly set up and migrate the traffic to its new cloud-based platform. Having gone live in October, the service is already making a significant impact, with over 25,000 new users signing on in the first week.

Casual users can access the service by filling in a survey through Alepo’s captive portal that asks for their age and work profile. On successful completion, they are granted four hours of free WiFi access. The captive portal redirects them to the Zii WiFi website, which provides educational content for all age groups, along with useful how-tos regarding government procedures that can be completed digitally. Users can also check their email, download apps, enjoy books, music, and videos. Returning customers are directly routed to the Zii WiFi site instead of the survey page.

In addition to the survey responses, Alepo’s advanced analytics and reporting module also captures key user information, including customized reports. This information is relayed to the site administrators, who intend to use the feedback to gain a deeper understanding of the demographic for future offerings.

Adriana Ramos, Project Head, PC Central, said, “We believe that communication is a public necessity, and we are committed to helping Sutel achieve its objective of making connectivity easily accessible to all. Alepo was our vendor of choice given its vast experience in deploying advanced cloud-based WiFi monetization solutions in the region, and it has helped bolster the capabilities of our service. We are pleased with the response we have received from users so far and are confident that the reporting and analytics capabilities of Alepo’s platform will enable us to continue improving our offerings.”

Juan Espinosa, Director LATAM, Alepo, said, “We are proud to partner with PC Central to help improve internet access across Costa Rica. Alepo’s WiFi Service Management Platform has replaced the legacy system to enable more advanced free journeys, with an improved data-gathering and analytics platform to generate custom reports requested by the service provider. We are confident that the newly revamped service will continue to gain popularity.”

About PC Central

PC Central is a leading solution integrator for information and communication technology solutions in Costa Rica. It is a Dell Technologies Titanium Partner.

For more information, please visit https://pccentralservicios.com/internet-empresarial/

About Alepo

Subscribe to the Alepo Newsletter

Network Functions Virtualization: Basics to Benefits

Network Functions Virtualization: Basics to Benefits

Network Functions Virtualization: Basics to Benefits

 

 

03rd of September 2020

 

 

 

 

With rising competition from operators and OTT players, the major differentiator for telecommunications service providers today is delivering disruptive and innovative services. To support these services, they need a more stable, reliable, and scalable network, such as one enabled by Network Function Virtualization (NFV). NFV has been an industry buzzword for some time now, so is it all that it’s cut out to be? From its benefits to its applications, we break it down for you to decide how to use it for your network.

Key Components of NFV

A modern network architecture technique, NFV virtualizes entire network functions using standard vendor-neutral hardware and IT infrastructure, facilitating improved communications services.
Key components of the NFV framework include:

Virtualized network functions (VNFs) are software implementations of various network functions that are deployed in network function virtualization infrastructure (NFVi), that were historically coupled with proprietary hardware appliances. VNFs run on virtual machines and are hosted on commercial off-the-shelf (COTS) computing devices, network hardware, and storage infrastructure. Common VNFs components include virtualized routers, DPI, firewalls, edge devices, signaling devices, load balancers, network address translation (NAT) services, WAN accelerators, and more. The primary hypervisors are OpenStack and VMware.

NFV infrastructure (NFVi) is the environment where VNFs run and comprises the hardware and software components from different vendors that are essential to successfully run the virtual network.

NFV management and orchestration (NFV-MANO) architectural framework is the key element of the European Telecommunications Standards Institute (ETSI) NFV architecture. It is a collection of all functional blocks, data repositories used by these blocks, and reference points and interfaces through which these functional blocks exchange information for the purpose of managing and orchestrating NFVi and VNFs. NFV-MANO includes the following components:

  • NFV Orchestrator (NFVO): a central component of an NFV-based solution that standardizes virtual network functions to improve the interoperability of software-defined network (SDN) elements. It orchestrates network resources for a broad range network services, enabling real-time automation, monitoring, and service assurance.
  • VNF Manager (VNFM): responsible for life cycle management, including deployment, monitoring, scaling, and removal of VNFs on a VIM.
  • Virtual Infrastructure Manager (VIM): responsible for managing, controlling, and monitoring virtual resources and their association with physical resources. It maintains the complete inventory of NFVi.

Together, these components replace traditional architecture to build a high-performing, reliable, and scalable network that delivers low-latency real-time applications while improving the operational efficiency of telecom services.

Top Six Benefits of NFV

NFV enables the swift creation of new services and facilitates rapid deployment in mobile and fixed networks. Its key benefits include:

Hardware flexibility and vendor independence

Legacy vendors offer their network functions on custom and dedicated hardware that is not easy to upgrade and demands a large investment of time and money. With NFV, network functions are virtualized and run on generic commercially available off-the-shelf (COTS) hardware, enabling service providers to share hardware across multiple network functions, giving them the advantage of software decoupling and building flexible virtual infrastructure that saves space, power, time, and costs. Operators can now mix and match vendors and functions for different features, software licensing costs, post-deployment support models, roadmaps, and more.

Faster service life cycle

Unlike physical hardware, VNFs can rapidly be created and removed on the fly. A VNF’s lifecycle is shorter and more dynamic since these functions are often added when needed and easily provisioned through automated software tools that do not require any onsite activity. In effect, NFV helps network operators commission or decommission services with the touch of a button without the need for physical shipping or delivery truck, dramatically reducing deployment time from weeks to minutes.

Rapid deployment of solutions

With the decoupling of software functionality and physical hardware, operators can deploy new solutions and put features into production rapidly, without requiring lengthy change requests or new appliances from legacy vendors. This expedited deployment process further facilitates NFV’s inherent support to use open source tools and software services.

Scalability and elasticity

Service providers always want to ensure they will be able to meet new requirements as well as scale up their capacity as their network grows. Doing so with traditional network equipment requires time, planning, and monetary investment. NFV eliminates these concerns as it enables capacity changes by offering a way to expand and reduce the resources used by VNFs. It enables scalability and automation, improves the flexibility of network service provisioning, and reduces the time needed to deploy new services. It efficiently ensures elasticity by offloading the VNF workload and spinning a new instance to implement the same network function and sharing the load with an existing VNF.

Lower energy consumption 

NFV helps reduce energy usage by exploiting the power management features of standard servers and storage, as well as workload consolidation and location optimization. For example, based on virtualization techniques, it is possible to focus the workload on a smaller number of servers during offpeak hours (such as nighttime) so that all other servers can be switched off or put on energy-saving mode.

Operational efficiency and agility

NFV is inherently automation-friendly and can maximize the benefits of using Machine to Machine (M2M) tools. For instance, a device management automation tool can be used to determine the need for more memory in a network function. NFV helps reduce downtime and also assists operators with various network maintenance activities. It helps temporarily reduce and free up existing VNFs for maintenance activities by spinning to a new VNF. This helps achieve In-Service-Software-Upgrade (ISSU), enables 24×7 self-healing networks, and minimizes operational loss of revenue due to network outages.

Leading NFV Applications

The benefits of NFV can be realized across a variety of network functions that can operate almost entirely in the cloud without the need for physical hardware. Some of its most popular applications include:

Virtual Evolved Packet Core (vEPC)

Virtualized EPC helps deliver superior quality of service (QoS) by dynamically scaling to meet the growing traffic. vEPC ensures lower OPEX and TCO while ensuring faster services to the market, consistent service availability, and improved network efficiency. Deployed in independent slices of the controllers, user planes, and management planes, vEPC is generally free of the architectural restrictions possessed by the traditional nodes-based EPC.

Multi-Access Edge Computing (MEC)

MEC is an alternative approach to the cloud environment. It brings data storage and computational capabilities closer to the data source, which is considered as an edge of the network. It enables computing resources to be distributed along the communication path by decentralizing the cloud infrastructure. The source of data or network edge can be the users’ devices, IoT device, router, or CSP’s server infrastructure, which helps reduce latency and save bandwidth. This minimizes long-distance communication between a client and server and most user actions are processed in real-time.

Virtual Customer Premises Equipment (vCPE)

vCPE, or cloud-CPE as it is also called, essentially transforms hardware-based operations like routing and security into virtual software-based operations, delivering them to the branch or edge networks. Traditionally, CPEs are task-specific with one device dedicated to performing one service. This includes VPNs, firewalls, routers, and more, all of which are hosted through a remote service provider or centralized management platform. It offers many benefits, including easier and swifter deployment, scalability, lower investment and operational cost, improved service flexibility, and scope for innovation.

Content Delivery Networks (CDNs)

Also known as a content distribution network, a CDN is a network of proxy servers and data centers, distributed across different locations to ensure high availability and performance. CDN operators enable the distribution of most content available on the Internet today, such as streaming media, web applications, downloadable content such as software, media files, documents, and occasionally security-related applications. While they earn revenue from content owners, CDN operators pay a hosting fee to ISPs and network operators.

Software-Defined Wide Area Network (SD-WAN)

According to research firm Gartner, over 90%of edge infrastructure refresh initiatives will comprise vCPE and SD-WAN devices by 2023. SD-WAN, as the name implies, employs software-defined means to manage a wide area network. It decouples the control mechanism from network hardware, facilitating simpler management, and more efficient operations. One of its primary applications is enabling the building of WANs with improved performance employing more economically viable commercial Internet access instead of high-cost private technologies.

Virtual AAA (vAAA)

Authentication, Authorization, Accounting (AAA) server can be deployed in an NFVi environment using ETSI-based standard integrations or customized instances provided by the NFVi vendor. Specific and generic VNFs manage the entire AAA lifecycle smoothly. A carrier-grade, high-performing, stateless, and cloud-native AAA (such as Alepo’s) integrates with the 5G core network to perform a host of functions such as slice authentication, authentication and authorization for DNN provisioning, authenticating access from non-3GPP networks, and more.

IP Multimedia Subsystem (IMS)

IMS enables the delivery of secure and reliable multimedia communications services (voice, video, text) over IP networks. Its 3GPP standards-based architectural framework provides a unified infrastructure to connect various devices and networks, standardizing the implementation and management of next-gen mobile networks. The IMS core includes Call Session Control Function (CSCF), Home Subscriber Server (HSS), Media Resource Functions (MRF), Signaling Gateway (SGW), and Media Gateway Control Function (MGCF), all of which together work together to act as the control layer.

Session Border Controllers (SBCs)

SBCs help control and secure IP communications sessions. While they were initially designed for VoIP networks, they are commonly also used for IP video, text messaging, and more for residential as well as enterprise applications. They facilitate communication between different parts of the network. Along with ensuring seamless connectivity, SBCs enable high quality of service, advanced security to protect against frauds and malicious attacks, statistics gathering, and more.

Network Monitoring

Network monitoring checks networking devices and components such as servers, firewalls, switches, routers, VMS, and more for faults and failures. When any discrepancy is noticed, an alert is triggered to notify the system administrators by email and/or SMS, enabling them to swiftly act to improve or rectify the problem. Part of network management, network monitoring optimizes performance, ensures high availability, and minimizes downtime.

Video Servers

Video servers help deliver video content using a host of devices. Broadly speaking, they are used in two key applications: security surveillance and broadcasting. In surveillance, a video server helps capture video using one or more analog and/or digital inputs, enables network connectivity for the analog components to digitize and stream the video over an IP network, and provides users to access it through a web browser or mobile app. In broadcasting, it offers a bidirectional platform to record video as well as ingest video from external sources, stores this video, and enables editing and transferring the final output to multiple video streams.

Service Delivery Platforms

A service delivery platform helps manage and control the entire delivery life cycle, from creation to execution. It provides the architecture for service providers to swiftly develop and launch convergent internet-based multimedia services such as IPTV, VoIP, mobile TV, multi-player video games, and more. Its telecommunications applications include value-added services (VAS), partner management, converged billing, and more. When used in the enterprise domain, it is especially useful as it lets operators run a dedicated platform for each enterprise, offering increased control to their customers. 

Security Accelerator Functions

Over the past decade, the technology protecting virtual and physical tools has considerably evolved, paving the way for virtualizing and, consequently, centralizing security. These network security functions include firewalls, spam protection systems, intrusion detection and prevention systems, virus scanners, and more. Virtual firewalls, for instance, are NFV solutions that protect virtual machines. As technology progresses, more and more of these security functions are expected to be virtualized.

Conclusion

Network Function Virtualization is imperative for operators looking to transform into digital service providers from mere traditional communications service providers. The next-gen NFV applications and use cases help them become successful in the digital era in the face of competition from innovative OTT applications. Plus, from the network operations perspective, virtualization employs an end-to-end service-based approach to replace traditional function-specific hardware, helping telcos achieve five-nines availability, lower CAPEX and OPEX, and ensure rapid time to market of new services. 

Keshav Pareek

Keshav Pareek

Solution Integrator

Keshav is a solution integrator working on DevOps tools and technology, with expertise in virtualization. Over the years, he’s helped facilitate tier-1 telcos to modernize their network functions using NFV-based deployment. Always keeping pace with the latest in the industry and often immersed in reading tech blogs, he spends his free time going on long bike rides in the countryside.

Subscribe to the Alepo Newsletter

Top 5 ways telcos can adapt to the virtual cultural shift

Top 5 ways telcos can adapt to the virtual cultural shift

Top 5 ways telcos can adapt to the virtual cultural shift

 

5th of May 2020

Telecommunications today is more essential than ever. Data and mobility have taken on a pivotal role across sectors like healthcare, education, transportation, smart cities, oil and gas, utilities, and more. Now, there is unprecedented demand on networks with cultural shifts due to the pandemic. Given the unpredictability of the future, and with many companies considering the possibility of permanently adopting remote work, the focus is directed to network contingency plans. One thing is clear: service providers with digitally advanced systems will adapt more easily to this cultural shift. And to enhance their systems, these are the top five factors they need to focus on:

Maintain high-performing and scalable networks

More people around the world are working from home due to lockdowns, and those isolating and in quarantine are spending more time on high-bandwidth streaming services such as Netflix, Youtube, and other entertainment channels, further increasing the network load. To serve this surge in demand and long-term cultural shift, telcos must invest in robust AAA infrastructure that is highly available, scalable, and stateless. Operators facing network challenges can transform AAA seamlessly and virtually, ensuring zero impact on their existing IT systems and integrations.

Automate workflows and processes

As their customers do more from home, telcos should also aim to reduce manual and in-person touchpoints. An advanced digital business support systems (BSS) stack helps automate business processes, including complex and repetitive tasks, freeing up network resources, and minimizing errors. Telcos can create, launch, deliver, and manage communications services entirely through a digital-first customer experience, keeping them ahead of the competition. Operators can introduce innovative plans, bonus policies, cashbacks, and targeted offers on-the-fly as the market evolves. Increased digitalization and personalization keeps customers engaged and loyal to the brand.

Digital transformation facilitates rapid implementation and customization as it possesses the following features:

  • Cloud-native services
  • Open APIs and standardized workflows
  • Automated provisioning, fulfillment, testing, chatbots
  • Microservice architecture

In addition, better internal processes and automated workflows mean higher productivity and efficiency in interacting with customers and vendors, while maintaining high operational excellence.

Deliver a digitally-advanced experience

It is crucial for telcos to adopt a digital-first approach to their business, not only because the majority of young consumers prefer interacting with brands through smartphones or online, but long-term cultural shifts due to the pandemic demand a rapid change to conducting business and serving customers virtually.

For example, customers prefer visual assistance to solve their problems. Vodafone has capitalized on this and uses the power of video to relieve the burden on their call centers that used to receive a staggering 5.2 million calls for technical assistance per year. They are now able to resolve customer issues remotely using AI and AR, helping their agents interpret and visually guide the customer, resulting in faster and more accurate problem resolution.

The main areas of focus for digitalization include:

  • Shift in-store customer experience to a digital channel
  • Reduce physical contact through virtual troubleshooting
  • Automate customer touchpoints to improve customer experience
  • Have IT systems that can support the cultural shift

Provide omnichannel support

With an increasing number of digital channels and a growing focus on customer experience, operators need to adopt an omnichannel strategy to keep pace with the expectations of customers. And its applications are two-fold.

For one, omnichannel engagement options extend a seamless, consistent, and unified shopping experience to customers across all touchpoints, whether they are shopping on the operator’s portal or through an online marketplace, physical stores, product catalogs, social media platforms, or chatbots.

Second, omnichannel self-care plays a significant role in the operator’s customer experience strategy, helping customers to play an active role in managing their accounts. Customers can manage their plans and services, create friends and family groups for special calling rates, and control data usage. The added transparency and increased ability to monitor accounts improves customer satisfaction and helps build trust. Automated and intelligent interactions through the web, mobile, and multiple social media channels further enhance the digital experience and empower customers with:

  • Automated digital onboarding
  • Simplified purchases
  • Automated support
  • Multiple payment modes
  • Swift complaint redressal
  • Gifting options
  • Parental controls

Move to SaaS to relieve IT

With the long-term shift to working virtually, a huge strain is put on a company’s IT infrastructure. SaaS software can relieve a huge burden on the IT infrastructure and ensure connectivity and reliability. One of the top priorities for all service providers must be shifting their infrastructure to the cloud because it lets them focus on digitization opportunities with limited investment. SaaS BSS architecture provides the telco with advanced modules, preconfigured fixed and mobile broadband plans, and 24×7 managed service operations, while a dedicated customer success manager ensures faster return on investment and reduced time-to-market. It also helps with reduced expenditure on hardware, infrastructure, maintenance, and more. The SaaS solution helps operators rapidly transform and adapt their business to modern technology trends that facilitate back-office process automation and digitize customer experience for their staff and subscribers.

Conclusion

To capitalize on cultural shifts and surging demand in data, telecom providers need to concentrate on a digital makeover, either as a complete network overhaul or a phased digital transformation. This includes not just offering better network capabilities but also implementing innovative tools and strategies to enable process automation and enhanced customer experience. Service providers must consider investing in digital technologies to build next-gen offerings and streamline business and IT operations, using SaaS software and agile methodologies to analyze and understand overall market demands, business requirements, customer data, and real-time delivery needs. It’s certain there is opportunity for companies to evolve in these challenging times.

Anand Ramani

Anand Ramani

Director R&D

A senior professional with more than 20 years of experience in the telecom BSS domain, Anand is passionate about adapting newer technologies and building digital products. He heads the company’s R&D activities for core products such as Digital BSS, WiFi, and AAA.

Subscribe to the Alepo Newsletter

Telecom 2020: Growth Drivers and Trends

Telecom 2020: Growth Drivers and Trends

Telecom 2020: Growth Drivers and Trends

 

10th of February 2020

One thing is certain in 2020: if telcos want to embrace new technologies that promise to revolutionize the industry, they will need to invest in infrastructure that enables them to support and monetize these technologies. According to a recent global EY report, telcos will pump more into overhauling their conventional IT infrastructure, making digital transformation a major driver this year.

This new infrastructure paves the way for a host of advanced customer-focused technologies: 5G, Internet of Things (IoT), Artificial Intelligence (AI), to name a few. Which ones are right for you and how can you maximize your chances of success? There’s no one answer: the key is finding the right mix of offering relevant to your market and context.

 

mobile money profitability

An analysis from Telecoms CAPEX: Worldwide Trends and Forecasts 2017-2025 shows that digitalization and 5G will be the key drivers affecting CAPEX growth.

Technologies transforming telecom

Here’s a roundup of the year’s biggest trends and what they could mean for you:

5G
Higher speeds and lower latency mean that 5G supports use cases like immersive content (augmented reality, virtual reality) and high-resolution video, helping CSPs deliver an unmatched customer experience to gain a competitive edge. As 5G progresses towards large-scale commercial viability, service providers have begun trials of new use cases, and the results are encouraging them to readily adopt the next-gen technology. As more devices and use cases become viable, the revenue potential continues to grow along with the need for flexible IT systems to support them.

Cloud Computing
Cloud computing in the telecom sector relies heavily on the adoption of data and logic separation principles, SDN/NFV, DevOps, microservices, and more. It gives telcos the flexibility to acquire the corresponding services – Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS), which extensively increases scalability, standardization, self-service automation, and reduces operational costs. Telecom players should adapt their IT processes and prepare for related security implications such as identity theft, unauthorized access, relinquished governance and compliance policies, data security and breach of privacy, as well as inconsistency across on-premise and cloud platforms. A recent Telecoms.com report predicts that 5G will mean wide-scale adoption of edge computing. The market is quickly evolving from a centralized to a distributed cloud, and it is expected that this year, 75% of enterprise-generated data will be processed outside of centralized data centers.

Artificial Intelligence
From virtual assistants and chatbots to knowledge engineering, smart machines, and autonomous vehicles, AI has the potential to replicate human cognitive capabilities. It will help telecom service providers offer a transformational customer experience while they manage, optimize, and monetize their infrastructure using different business models. Use cases include network optimization, predictive maintenance, virtual assistants, RPA, and many more.

Blockchain
Blockchain is a gamechanger for securely conducting business with third-parties while reducing costs and increasing revenue. CSPs can leverage blockchain to offer new services using tamperproof transaction management and automated contracting. Applications include 5G enablement, mobile financial services, data management, fraud management, identity management, instantaneous connectivity and transaction, IoT connectivity, number portability, roaming, and more.

Internet of Things
IoT will, in conjunction with 4G and 5G, change how people communicate and interact with technologies opening up new revenue streams for service providers. It is an essential part of capturing and transmitting data to power smart city use cases like smart lighting, smart grids, heating, and lighting. Telcos are applying IoT to home automation and wearable devices to enhance their overall customer experiences. In the coming years, IoT smart sensors will be implemented in gaming environments, healthcare, personal fitness goals, sports, and more.

Cyber Resilience
The telecom industry has always been the most vulnerable target for cyberattacks given the vast amounts of sensitive data stored on various complex networks. A few years ago, for instance, one of the more significant attacks compromised the personal details of 157,000 TalkTalk customers. 5G brings its own set of security threats, and telcos need to prepare for any kind of direct or indirect cyber attack. This means building adequate IT infrastructure and pairing it with talent and processes to support resiliency. Effective cybersecurity must include the implementation of threat detection, incident response methods, and prevention methods.

How to seize these opportunities

Start your digital transformation journey now

A recent report predicts that the OSS/BSS market is expected to grow from USD 2.77 billion in 2019 to USD 8.78 billion by 2026, indicating a significant potential for telcos to support diverse digital services than limited traditional services. To ensure successful digital transformation, CSPs need to upgrade to digital BSS, which can be implemented in phases to pace out investment. This helps operators seize data opportunities as the market evolves and ensures quick time-to-market, monetization, and smooth management of the latest communications services. A next-gen digital BSS stack also facilitates high-value 5G use cases, including IoT (management and offers), and experience-based charging.

Invest in 5G infrastructure
As 5G permeates, mobile operators will need to invest significantly in 5G infrastructure to deliver high data speed, low latency, and to support billions of connected devices. Besides the billions being spent on 5G RAN, the 5G Core is an important investment. 5G Core with cloud-native features expands the service capabilities of telcos; provides scalability and agility; supports 5G network protocols including extensive use of REST APIs and eases migration to service-based architecture.

Ensure strict regulatory policies
According to Statista.com, the number of devices connected to the IoT is expected to reach 75.44 billion worldwide by 2025. IoT-enabled networks are more vulnerable to major cyber invasions and crimes. Insufficiently protected devices such as laptops, tablets, routers, webcams, smartwatches, automobiles, and home security systems can be turned into weapons by hackers, cybercriminals, or hostile organizations and states, so it’s essential to implement adequate cybersecurity measures.

Overcome network coverage issues
Having reliable 5G network coverage will require a massive investment of time and finances. Operators can resolve network coverage issues by taking these measures:

Infrastructure sharing alleviates network coverage issues and helps operators deliver better connectivity and network performance by pooling resources to maximize coverage buildout.

The open radio access network (O-RAN) movement is separating the software and physical layers of RAN, eliminating vendor lock-in and allowing budgets to go much further in procuring equipment.

Network monitoring tools remain a powerful mechanism to resolve network issues. These tools provide real-time alerts to the concerned teams when there is downtime, device unavailability, performance issues, or any deviation from an accepted network baseline. Further, network configuration management tools help track any changes in settings and send alerts in case of unauthorized changes while providing a mechanism to roll back to earlier settings.

Also, Voice over WiFi (VoWiFi)/WiFi Calling helps overcome the challenges faced by subscribers due to poor or no network coverage. VoWiFi helps customers make calls and remain always-connected, increasing the quality of services and customer experience.

Automate inventory management
One of the major challenges operators face with 5G is managing billions of IoT devices. Further, with evolving technologies, the CSPs having diverse partnerships require constant efforts to manage and allocate resources and inventory. Inefficient management could lead to complicated and faulty invoices, increased risk of fraud, data breaches, insecure network endpoints, and revenue losses. To avoid these complications, CSPs should have a universal system with legacy and new automated inventory tools, which also maintain an inventory of virtual networking components and logical networks like network slices. Subsequently, deploying a next-gen inventory management system provides real-time inventory information with factual and predictive data, helping make quick allocation decisions that ensure the conservation of investment and help gain an edge over competitors.

Manage partnerships efficiently
CSPs need real-time billing and policy control capabilities to seize and monetize opportunities that all-IP 5G means new devices, use cases, partnerships, business models. This calls for diverse partnerships inherent in wholesale and 5G networks. With growing complexities of managing diverse partners, it multiplies the challenges to efficiently manage several partners like wholesale, interconnect and roaming partners, OTT/content players, distributors, MVNO, affiliates, and agents. Deploying end-to-end partner management and settlement solution (PMSS) helps operators smoothly and flawlessly manage the complete partner lifecycle and support distinct agreement policies, revenue models, and settlement modes. PMSS plays a vital role in the 5G business and has the highest potential to launch innovative 5G billing use cases like network slicing, device-based experiences, converged offerings, and more.

Digitize customer experience
A Walker study suggests that by 2020, customer experience (CX) will overtake price and product as the key brand differentiator. Enhancing and digitizing the customer experience should top the list for every forward-thinking telco. 5G and IoT will likely emerge as the new battleground, with operators keen to employ new digital business models. And as expectations cross industry boundaries, telcos must remain focused on redefining the CX with more innovation, such as deploying AI-based tools and omnichannel support.

Be prepared for what’s next

5G is expected to significantly change the face of telecommunications. The three main use cases of 5G – Enhanced Mobile Broadband (eMBB), Massive Machine-type Communications (mMTC), and Ultra-Reliable and Low-Latency Communications (URLLC) – promise to deliver superfast wireless connectivity, lower latency, and digital innovations. And while it is expected to revolutionize the customer experience, 5G will stimulate the demand for next-gen devices, adding to severe network densification. With this forecast, CSPs have huge revenue potential from their retail and enterprise clients by digitalizing the customer experience. Additionally, they can offer B2B and B2C clients an enhanced spectrum of services such as augmented reality (AR), virtual reality (VR), mixed reality (MR), and a host of other leading-edge next-gen services. Operators can unveil the monetization opportunities that 5G promises and achieve a high-level of orchestration and automation with a robust 5G Core solution along with a modern digital BSS stack.

Rani Shanmugam

Rani Shanmugam

Marketing Content Writer

Long story short, Rani writes about the workings of telecom networks. Short story long, she has a rich and diverse background as a developer, business analyst, and technical writer for broad-spectrum solutions across various industries, and is now focused on telecommunications marketing. She unwinds by painting with her toddler son and loves to whip up elaborate meals fit for a feast.

Subscribe to the Alepo Newsletter